Transformations, Symmetry, and the Starblanket
The Mathematics of Indigenous Design

Edward Doolittle

Department of Indigenous Science, the Environment, and Economic Development
First Nations University of Canada

October 24, 2017
Acknowledgements

Geometric Transformations
Symmetry and Groups
Starblankets
Sequences and Series

Edward Doolittle
Transformations, Symmetry, and the Starblanket
1 Acknowledgements

2 Geometric Transformations

- Unified Canadian Aboriginal Syllabics
- Birch Bark Biting
1 Acknowledgements

2 Geometric Transformations
 - Unified Canadian Aboriginal Syllabics
 - Birch Bark Biting

3 Symmetry and Groups
 - West Coast Art and Totem Poles
 - Quill Boxes
 - Pueblo Pottery
Acknowledgements

2 Geometric Transformations
- Unified Canadian Aboriginal Syllabics
- Birch Bark Biting

3 Symmetry and Groups
- West Coast Art and Totem Poles
- Quill Boxes
- Pueblo Pottery

4 Starblankets
- Some Shapes
- Starblanket Designs
1. Acknowledgements

2. Geometric Transformations
 - Unified Canadian Aboriginal Syllabics
 - Birch Bark Biting

3. Symmetry and Groups
 - West Coast Art and Totem Poles
 - Quill Boxes
 - Pueblo Pottery

4. Starblankets
 - Some Shapes
 - Starblanket Designs

5. Sequences and Series
 - The Square Perimeter Sequence
 - The Starblanket Perimeter Sequence
 - The Square Area Sequence
 - The Starblanket Area Sequence
 - Arithmetic Series
Acknowledgements
I would like to thank the Banff International Research Station for supporting this work.

I would like to thank Elders Betty McKenna and the late Narcisse Blood for their help.
Acknowledgements
Geometric Transformations
Symmetry and Groups
Starblankets
Sequences and Series

Edward Doolittle
Transformations, Symmetry, and the Starblanket
Betty McKenna
Geometric Transformations
Geometric Transformations

- Translation
- Rotation
- Reflection
- Glide-reflection

Key:
- Translation axis
- Two-fold rotation
- Reflection axis
- Glide-reflection axis
Unified Canadian Aboriginal Syllabics
Acknowledgements

Geometric Transformations
Symmetry and Groups
Starblankets
Sequences and Series

Unified Canadian Aboriginal Syllabics

Edward Doolittle
Transformations, Symmetry, and the Starblanket
Birch Bark Biting
Transformations, Symmetry, and the Starblanket

Edward Doolittle
Transformations, Symmetry, and the Starblanket

Edward Doolittle
Symmetry and Groups
Symmetry Groups

Edward Doolittle Transformations, Symmetry, and the Starblanket
West Coast Art and Totem Poles
Art Examples: Drawings
Art Examples: Drawings
Acknowledgements

Geometric Transformations
Symmetry and Groups
Starblankets
Sequences and Series

West Coast Art and Totem Poles
Quill Boxes
Pueblo Pottery

Edward Doolittle
Transformations, Symmetry, and the Starblanket
Edward Doolittle
Transformations, Symmetry, and the Starblanket
Quill Boxes
Edward Doolittle
Transformations, Symmetry, and the Starblanket
Transformations, Symmetry, and the Starblanket
Acknowledgements
Geometric Transformations
Symmetry and Groups
Starblankets
Sequences and Series

West Coast Art and Totem Poles
Quill Boxes
Pueblo Pottery

Edward Doolittle
Transformations, Symmetry, and the Starblanket
Edward Doolittle

Transformations, Symmetry, and the Starblanket
Edward Doolittle
Transformations, Symmetry, and the Starblanket
Transformations, Symmetry, and the Starblanket

Edward Doolittle
Pueblo Pottery
Transformations, Symmetry, and the Starblanket
Edward Doolittle

Transformations, Symmetry, and the Starblanket
Starblankets
Some Shapes
Some Shapes

Square

Edward Doolittle
Transformations, Symmetry, and the Starblanket
Some Shapes

Square

Rectangle
Some Shapes

Square

Rectangle

Rhombus
Some Shapes

- Square
- Rectangle
- Rhombus
- Parallelogram

Edward Doolittle

Transformations, Symmetry, and the Starblanket
Starblanket Designs
Starblanket

Edward Doolittle

Transformations, Symmetry, and the Starblanket
Another Starblanket
First Nations University

Edward Doolittle

Transformations, Symmetry, and the Starblanket
Non-Rhombus Starblanket
Seven-pointed Starblanket
Sequences and Series
The Square Perimeter Sequence
The Square Perimeter Sequence: Radius 1, Length 4
The Square Perimeter Sequence: Radius 2, Length 8
The Square Perimeter Sequence: Radius 3, Length 12
The Square Perimeter Sequence: Radius 4, Length 16
The Square Perimeter Sequence: Radius 5, Length 20
Finite Differences for Square Perimeter Sequence

How can we continue the square perimeter sequence 4, 8, 12, 16, 20 without using algebra?
How can we continue the square perimeter sequence 4, 8, 12, 16, 20 without using algebra? We can use a finite difference scheme.

\begin{align*}
4 & \\
8 & \\
12 & \\
16 & \\
20 & \\
\end{align*}
Finite Differences for Square Perimeter Sequence

How can we continue the square perimeter sequence 4, 8, 12, 16, 20 without using algebra? We can use a finite difference scheme.

4 8 12 16 20
4 4 4 4
4
Finite Differences for Square Perimeter Sequence

How can we continue the square perimeter sequence 4, 8, 12, 16, 20 without using algebra? We can use a finite difference scheme.

Notice we have constant first differences, also known as a **common difference**. Can we use this table to predict the next square perimeter number?
Finite Differences for Square Perimeter Sequence

How can we continue the square perimeter sequence 4, 8, 12, 16, 20 without using algebra? We can use a finite difference scheme.

Notice we have constant first differences, also known as a common difference. Can we use this table to predict the next square perimeter number?
How can we continue the square perimeter sequence $4, 8, 12, 16, 20$ without using algebra? We can use a finite difference scheme.

Notice we have constant first differences, also known as a common difference. Can we use this table to predict the next square perimeter number?
The Starblanket Perimeter Sequence
The Starblanket Perimeter Sequence: Radius 1, Length 16
The Starblanket Perimeter Sequence: Radius 2, Length 32
The Starblanket Perimeter Sequence: Radius 3, Length 48
The Starblanket Perimeter Sequence: Radius 4, Length 64
The Starblanket Perimeter Sequence: Radius 5, Length 80
Finite Differences for Starblanket Perimeter Sequence

How can we continue the starblanket perimeter sequence 16, 32, 48, 64, 80 without using algebra?

We can use a finite difference scheme. Notice we have constant first differences, like other 1D figurate numbers (perimeters of squares, perimeters of triangles). Can we use this table to predict the next starblanket perimeter number?
Finite Differences for Starblanket Perimeter Sequence

How can we continue the starblanket perimeter sequence 16, 32, 48, 64, 80 without using algebra? We can use a finite difference scheme.

16
32
48
64
80
How can we continue the starblanket perimeter sequence \(16, 32, 48, 64, 80\) without using algebra? We can use a finite difference scheme.

Notice we have constant first differences, like other 1D figurate numbers (perimeters of squares, perimeters of triangles). Can we use this table to predict the next starblanket perimeter number?
Finite Differences for Starblanket Perimeter Sequence

How can we continue the starblanket perimeter sequence 16, 32, 48, 64, 80 without using algebra? We can use a finite difference scheme.

Notice we have constant first differences, like other 1D figurate numbers (perimeters of squares, perimeters of triangles). Can we use this table to predict the next starblanket perimeter number?
How can we continue the starblanket perimeter sequence 16, 32, 48, 64, 80 without using algebra? We can use a finite difference scheme.

Notice we have constant first differences, like other 1D figurate numbers (perimeters of squares, perimeters of triangles). Can we use this table to predict the next starblanket perimeter number?
How can we continue the starblanket perimeter sequence 16, 32, 48, 64, 80 without using algebra? We can use a finite difference scheme.

Notice we have constant first differences, like other 1D figurate numbers (perimeters of squares, perimeters of triangles). Can we use this table to predict the next starblanket perimeter number?
The Square Area Sequence
The Square Area Sequence: Radius 1, Area 1
The Square Area Sequence: Radius 2, Area 4
The Square Area Sequence: Radius 3, Area 9
The Square Area Sequence: Radius 4, Area 16
The Square Area Sequence: Radius 5, Area 25
Finite Differences for Square Area Sequence

How can we continue the square area sequence 1, 4, 9, 16, 25 without using algebra? We can again use a finite difference scheme.
Finite Differences for Square Area Sequence

How can we continue the square area sequence 1, 4, 9, 16, 25 without using algebra? We can again use a finite difference scheme.

\[
\begin{array}{c}
1 \\
4 \\
9 \\
16 \\
25 \\
\end{array}
\]

Notice we have constant second differences. Can we use this table to predict the next square area number?
Finite Differences for Square Area Sequence

How can we continue the square area sequence 1, 4, 9, 16, 25 without using algebra? We can again use a finite difference scheme.

Notice we have constant second differences. Can we use this table to predict the next square area number?
Finite Differences for Square Area Sequence

How can we continue the square area sequence 1, 4, 9, 16, 25 without using algebra? We can again use a finite difference scheme.
Finite Differences for Square Area Sequence

How can we continue the square area sequence 1, 4, 9, 16, 25 without using algebra? We can again use a finite difference scheme.

```
1
4
9
16
25
```

```
3
5
7
9
```

```
2
2
2
```

Notice we have constant second differences. Can we use this table to predict the next square area number?
Finite Differences for Square Area Sequence

How can we continue the square area sequence 1, 4, 9, 16, 25 without using algebra? We can again use a finite difference scheme.

Notice we have constant second differences. Can we use this table to predict the next square area number?
Finite Differences for Square Area Sequence

How can we continue the square area sequence 1, 4, 9, 16, 25 without using algebra? We can again use a finite difference scheme.

Notice we have constant second differences. Can we use this table to predict the next square area number?
How can we continue the square area sequence 1, 4, 9, 16, 25 without using algebra? We can again use a finite difference scheme.

Notice we have constant second differences. Can we use this table to predict the next square area number?
The Starblanket Area Sequence
The Starblanket Area Sequence: Radius 1, Patches 8
The Starblanket Area Sequence: Radius 2, Patches 32
The Starblanket Area Sequence: Radius 3, Patches 72
The Starblanket Area Sequence: Radius 4, Patches 128
The Starblanket Area Sequence: Radius 5, Patches 200
Finite Differences for Starblanket Area Sequence

How can we continue the starblanket area sequence 8, 32, 72, 128, 200 without using algebra? We can again use a finite difference scheme.
Finite Differences for Starblanket Area Sequence

How can we continue the starblanket area sequence 8, 32, 72, 128, 200 without using algebra? We can again use a finite difference scheme.

<table>
<thead>
<tr>
<th></th>
<th>8</th>
<th>32</th>
<th>72</th>
<th>128</th>
<th>200</th>
</tr>
</thead>
<tbody>
<tr>
<td>Δ</td>
<td></td>
<td>24</td>
<td>40</td>
<td>56</td>
<td>88</td>
</tr>
<tr>
<td>Δ</td>
<td></td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>16</td>
</tr>
</tbody>
</table>

Notice we have constant second differences, like other 2D figurate numbers (square numbers, triangle numbers). Can we use this table to predict the next starblanket area number?
Finite Differences for Starblanket Area Sequence

How can we continue the starblanket area sequence 8, 32, 72, 128, 200 without using algebra? We can again use a finite difference scheme.

<table>
<thead>
<tr>
<th>8</th>
<th>32</th>
<th>72</th>
<th>128</th>
<th>200</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>40</td>
<td>56</td>
<td>72</td>
<td></td>
</tr>
</tbody>
</table>
How can we continue the starblanket area sequence 8, 32, 72, 128, 200 without using algebra? We can again use a finite difference scheme.
Finite Differences for Starblanket Area Sequence

How can we continue the starblanket area sequence 8, 32, 72, 128, 200 without using algebra? We can again use a finite difference scheme.

Notice we have constant second differences, like other 2D figurate numbers (square numbers, triangle numbers). Can we use this table to predict the next starblanket area number?
Finite Differences for Starblanket Area Sequence

How can we continue the starblanket area sequence 8, 32, 72, 128, 200 without using algebra? We can again use a finite difference scheme.

Notice we have constant second differences, like other 2D figurate numbers (square numbers, triangle numbers). Can we use this table to predict the next starblanket area number?
Finite Differences for Starblanket Area Sequence

How can we continue the starblanket area sequence 8, 32, 72, 128, 200 without using algebra? We can again use a finite difference scheme.

Notice we have constant second differences, like other 2D figurate numbers (square numbers, triangle numbers). Can we use this table to predict the next starblanket area number?
How can we continue the starblanket area sequence 8, 32, 72, 128, 200 without using algebra? We can again use a finite difference scheme.

Notice we have constant second differences, like other 2D figurate numbers (square numbers, triangle numbers). Can we use this table to predict the next starblanket area number?
Arithmetic Series
First Nations University

Edward Doolittle

Transformations, Symmetry, and the Starblanket
First Nations University: How Many Patches?
First Nations University: How Many Patches?

Edward Doolittle

Transformations, Symmetry, and the Starblanket
First Nations University: How Many Patches?
First Nations University: How Many Patches?

Edward Doolittle
Transformations, Symmetry, and the Starblanket
Thank You for Your Interest